If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10+40t-5t^2=0
a = -5; b = 40; c = +10;
Δ = b2-4ac
Δ = 402-4·(-5)·10
Δ = 1800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1800}=\sqrt{900*2}=\sqrt{900}*\sqrt{2}=30\sqrt{2}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-30\sqrt{2}}{2*-5}=\frac{-40-30\sqrt{2}}{-10} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+30\sqrt{2}}{2*-5}=\frac{-40+30\sqrt{2}}{-10} $
| (x)5-9=13 | | -5-6=6x+5-5x | | 12x-24=3x-6+6x+12 | | -3x–2=16 | | 12x-24+3x-6+10x=180 | | 52-7x=14 | | 9x-25+x=180 | | w^2-8w-660=0 | | (x-6)²=2x-5 | | 12+26x=65 | | (x-8)^2=-62 | | 2x+32=9×-45= | | 2x+32=9×-45 | | (8x+9)=(8x-9) | | x-4(x-4)=0 | | 3x+129=1,000 | | 2x+32=9×-45×= | | x+34=4000 | | x+23+23=180 | | x+77+77=180 | | x+77=190 | | 18x+24=200x | | x+77+77-12=180 | | x+77+77=190 | | X-4/x=13/3 | | 25x+12=2x+211 | | 24x-24=240x-240 | | 2x^2+6x=60 | | 200x-80=140x+40 | | 60=2x^2+6x | | 2x+1/x=17/6 | | 2x-2=20x |